分子動力學(MD)是一種重要的數值模擬方法,通過求解所有相互作用,模擬原子的運動方程,實現目標系統時間演化的模擬,從而計算給定模擬時間內組成能量與其他熱力學量等材料性質。MD的中心問題是構建足夠有效和準確的模型,將量子尺度的相互作用適應到經典方程中。
Fig. 1 Comparison of the bond energies or the penalty energies on the basic test molecules.
在眾多的勢模型中,反應力場(ReaxFF)勢由于其物理現象的再現性和準確性,被廣泛應用于材料領域的研究。然而,迄今為止,許多引起人們興趣的系統都沒有在文獻中涵蓋,即使有也需要基于先前開發的參數集進行進一步的調整,以組成一個可靠的MD模型來解決實際問題。因此,發展ReaxFF參數是很有必要的。

Fig. 2 Results of the c-SiO2 thermal expansion.
來自三星日本公司Junichi Noaki等,開發了Si/O/H反應力場參數集,并將其應用于硅干/濕氧化過程中,以理解Si(100)表面熱氧化的基本物理原理。

Fig. 3 Total energies calculated on small c-SiO2 test structures in different phases as a function of the volume per atom.
作者利用SiO2晶體體積的實驗數據作為訓練數據,對Si/O參數進行了系統開發,完成了在300-1300K溫度范圍內的真實熱行為。通過對Si/O/H系統相關的參數戰略調整,作者進行了濕和干過程的模擬對比。

在所得到的ReaxFF中,研究結果提供了原位蒸汽生成(ISSG)氧化過程中H原子的一些關鍵特征,包括對逐層氧化性能的影響和氧化速率的提高。通過將獲得的ReaxFF結果與其他作者最近開發的參數集獲得的結果進行比較,深入理解了H原子在氧化過程中的作用。

Fig. 5 Time evolution of the number of O atoms retained in the system through the thermal oxidation of Si.
該工作提供的ReaxFF參數,為未來各種環境下的制造工藝的研究提供了有用的信息和見解。該文近期發表于npj Computational Materials?9:?161?(2023)。
Editorial Summary
Molecular dynamics (MD) is an important numerical simulation method, which can carry out the time evolution of the target system by solving the equation of motions for all simulated atoms that are interacting with each other, thereby investigate the properties of materials from the coordination of individual atoms in the system at a given simulation time by calculating the constituent energy and other thermodynamic quantities.

The central issue of MD is how to accommodate the quantum-scale interactions into the classical equations and construct a sufficiently effective and accurate model. Among numerous potential models, the reactive force field (ReaxFF) potential is widely used in extensive studies in the field of material because of its reproducibility of physical phenomena with great accuracy. However, so far many systems of interest are simply not covered in the literature, or, if any, further elaborate tuning is required based on previously developed parameter sets to make up a reliable MD model to answer practical questions. Therefore, it is of great importance to develop the ReaxFF parameter sets.?

Junichi Noaki et al. from Samsung Japan Corporation, developed the Si/O/H reactive force field parameter set and applied to silicon dry/wet oxidation process to understand the underlying physics of the thermal oxidation of the Si(100) surface. Employing the experimental volume of the SiO2 crystal at different temperatures as training data, a realistic thermal behavior was accomplished, finishing the same result over the temperature range of 300–1300 K. With strategic tunings of parameters related to Si/O/H system, the authors carried out the simulation comparing the wet-and dry processes.?
In the demonstration of the resulting ReaxFF, results provided some key characteristics of the H atoms in the ‘in-situ-steam-generation (ISSG)’ oxidation processes, including the effect on the layer-by-layer oxidation property and the oxidation rate enhancement. Via comparing the results with those obtained by using parameter set recently developed by other authors, an insight into the role of H atoms in the oxidation process was acquired. ReaxFF parameters in this work provide useful information and insight into the study of manufacturing processes for various settings in the future. This article was recently published in npj Computational Materials?9:?161?(2023).

原文Abstract及其翻譯
Development of the reactive force field and silicon dry/wet oxidation process modeling (開發反應力場模擬硅干/濕氧化過程)
Junichi Noaki,?Satoshi Numazawa,?Joohyun Jeon?&?Shuntaro Kochi?
Abstract
We developed the Si/O/H reactive force field parameter set and applied to silicon dry/wet oxidation process to understand the underlying physics of the thermal oxidation of the Si(100) surface. Through a systematic development of the Si/O parameter using the experimental data of the volumes of the SiO2?crystal as a reference, we reproduced the same result over the temperature range of 300–1300?K. With strategic tunings of parameters related to Si/O/H system, we carried out the simulation comparing the wet-and dry processes. A significant acceleration of the oxide film growth seen in the ‘in-situ-steam-generation (ISSG)’ is successfully represented. These properties of our model imply its applicability in wider scope. We compare our results with those obtained by using parameter set recently developed by other authors. Investigating the configuration of atoms near the interface of the SiO2?film, our model is found to be able to study the role of hydrogen atoms for the ISSG acceleration.
摘要
我們開發了Si/O/H反應力場參數集,并將其應用于硅干/濕氧化過程中,以理解Si(100)表面熱氧化的基本物理原理。利用SiO2晶體體積的實驗數據作為參考,我們對Si/O參數進行了系統開發,在300-1300K溫度范圍內重現了相同的結果。通過對Si/O/H系統相關的參數戰略調整,我們進行了濕和干過程的模擬對比。在“原位蒸汽生成(ISSG)”中所看到的氧化膜增長顯著加速被成功展示。我們模型的這些特性暗示了其在更大范圍內的適用性。我們將結果與其他作者最近開發的參數集獲得的結果進行了比較。通過研究了二氧化硅薄膜界面附近的原子構型,我們發現該模型能夠研究氫原子在ISSG加速中的作用。
原創文章,作者:計算搬磚工程師,如若轉載,請注明來源華算科技,注明出處:http://www.zzhhcy.com/index.php/2024/01/24/5bb4a98709/